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In this paper we consider a one-dimensional one-phase Stefan problem corresponding to 

the solidification process of a semi-infinite material with a convective boundary condition 

at the fixed face. The exact solution of this problem, available recently in the literature, en- 

able us to test the accuracy of the approximate solutions obtained by applying the classical 

technique of the heat balance integral method and the refined integral method, assuming 

a quadratic temperature profile in space. We develop variations of these methods which 

turn out to be optimal in some cases. Throughout this paper, a dimensionless analysis is 

carried out by using the parameters: Stefan number (Ste) and the generalized Biot number 

(Bi). In addition it is studied the case when Bi goes to infinity, recovering the approximate 

solutions when a Dirichlet condition is imposed at the fixed face. Some numerical simu- 

lations are provided in order to estimate the errors committed by each approach for the 

corresponding free boundary and temperature profiles. 
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1. Introduction 

Stefan problems model heat transfer processes that involve a change of phase. They constitute a broad field of study

since they arise in a great number of mathematical and industrial significance problems [1–4] . A large bibliography on the

subject was given in [5] and a review on analytical solutions is given in [6] . 

Due to the non-linearity nature of this type of problems, exact solutions are limited to a few cases and it is necessary

to solve them either numerically or approximately. The heat balance integral method introduced by Goodman in [7] is a

well-known approximate mathematical technique for solving heat transfer problems and particularly the location of the free

boundary in heat-conduction problems involving a phase of change. This method consists in transforming the heat equation

into an ordinary differential equation over time by assuming a quadratic temperature profile in space. In [8–14] this method

is applied using different accurate temperature profiles such as: exponential, potential, etc. Different alternative pathways to

develop the heat balance integral method were established in [15] . 

In the last few years, a series of papers devoted to integral method applied to a variety of thermal and moving bound-

ary problems have been published [16–19] . The recent principle problem emerging in application in heat balance integral

method has spread over the area of the non-linear heat conduction: [20–22] , and fractional diffusion: [23–25] . 
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In this paper, we obtain approximate solutions through integral heat balance methods and variants obtained thereof

proposed in [15] for the solidification of a semi-infinite material x > 0 when a convective boundary condition is imposed at

the fixed face x = 0 . 

The convective condition states that heat flux at the fixed face is proportional to the difference between the material

temperature and the neighbourhood temperature, i.e.: 

k 
∂T 

∂x 
(0 , t) = H(t ) ( T (0 , t ) + �∞ 

) , 

where T is the material temperature, k is the thermal conductivity, H ( t ) characterizes the heat transfer at the fixed face and

−�∞ 

< 0 represents the neighbourhood temperature at x = 0 . 

In this paper we will consider the solidification process of a semi-infinite material when a convective condition at the

fixed face x = 0 of the form H(t) = 

h √ 

t 
, h > 0 is imposed. There are very few research studies that examine the heat balance

integral method applied to Stefan problems with a convective boundary condition. Only in [7,26,27] , a convective condi-

tion fixing H(t) = h > 0 is considered. Although approximate solutions are provided, their precision is verified by making

comparisons with numerical methods since there is not exact solution for this choice of H . 

The mathematical formulation of the problem under study with its corresponding exact solution given in [28] will be

presented in Section 2 . Section 3 introduces approximate solutions using the heat balance integral method, the refined

heat balance integral method and two alternatives methods for them. In Section 4 we also study the limiting cases of

the obtained approximate solutions when h → ∞ , recovering the approximate solutions when a temperature condition at

the fixed face is imposed. Finally, in Section 5 we compare the approximate solutions with the exact one to the problem

presented in Section 1 , analysing the committed error in each case. 

2. Mathematical formulation and exact solution 

We consider a one-dimensional one-phase Stefan problem for the solidification of a semi-infinite material x > 0, where

a convective condition at the fixed face x = 0 is imposed. This problem can be formulated mathematically in the following

way: 

Problem (P) . Find the temperature T = T (x, t) at the solid region 0 < x < s ( t ) and the location of the free boundary x =
s (t) such that: 

∂T 

∂t 
= 

k 

ρc 

∂ 2 T 

∂x 2 
, 0 < x < s (t) , t > 0 , (1) 

k 
∂T 

∂x 
(0 , t) = 

h √ 

t 
(T (0 , t) + �∞ 

) , t > 0 , (2) 

T (s (t ) , t ) = 0 , t > 0 , (3) 

k 
∂T 

∂x 
(s (t ) , t ) = ρλ ˙ s (t) , t > 0 , (4) 

s (0) = 0 . (5) 

where the thermal conductivity k , the mass density ρ , the specific heat c and the latent heat per unit mass λ are given posi-

tive constants. The condition (2) represents the convective condition at the fixed face where −�∞ 

< 0 is the neighbourhood

temperature at x = 0 and h > 0 is the coefficient that characterizes the heat transfer at the fixed face. 

The analytical solution for the problem (P), using the similarity technique, was obtained in [28] and for the one-phase

case is given by: 

T (x, t) = −A �∞ 

+ B �∞ 

erf 

(
x 

2 

√ 

αt 

)
, (6) 

s (t) = 2 ξ
√ 

αt , (α = 

k 

ρc 
: diffusion coefficient ) (7) 

where the constants A and B are defined by: 

A = 

erf ( ξ ) 
1 

Bi 
√ 

π
+ erf (ξ ) 

, (8) 
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B = 

1 

1 
Bi 

√ 

π
+ erf (ξ ) 

, (9)

and the dimensionless coefficient ξ is the unique positive solution of the following equation: 

z exp 

(
z 2 

)(
erf ( z ) + 

1 

Bi 
√ 

π

)
− Ste √ 

π
= 0 , z > 0 . (10)

The dimensionless parameters defined by: 

Ste = 

c�∞ 

λ
and Bi = 

h 

√ 

α

k 
, (11)

represent the Stefan number and the generalized Biot number, respectively. 

3. Approximate solutions 

As one of the mechanisms for the heat conduction is the diffusion, the excitation at the fixed face x = 0 (for example,

a temperature, a flux or a convective condition) does not spread instantaneously to the material x > 0. However, the effect

of the fixed boundary condition can be perceived in a bounded interval [0, δ( t )] (for every time t > 0) outside of which the

temperature remains equal to the initial temperature. The heat balance integral method presented in [7] established the

existence of a function δ = δ(t) that measures the depth of the thermal layer. In problems with a phase of change, this

layer is assumed as the free boundary, i.e δ(t) = s (t) . 

From Eq. (1) and conditions (3) and (4) we obtain the new condition: (
∂T 

∂x 

)2 

(s (t ) , t ) = −λ

c 

∂ 2 T 

∂x 2 
(s (t ) , t ) . (12)

From Eq. (1) and condition (3) we obtain the integral condition: 

d 

dt 

s (t) ∫ 
0 

T (x, t) dx = 

k 

ρc 

[
ρλ

k 
˙ s (t) − ∂T 

∂x 
(0 , t) 

]
. (13)

The classical heat balance integral method introduced in [7] to solve problem (P) proposes the resolution of a problem

that arises by replacing the Eq. (1) by the condition (13) , and the condition (4) by the condition (12) ; that is, the resolution

of the approximate problem defined as follows: conditions (2), (3), (5), (12) and (13) . 

In [15] , a variant of the classical heat balance integral method was proposed by replacing Eq. (1) by condition (13) ,

keeping all others conditions of the problem (P) equals; that is, the resolution of an approximate problem defined as follows:

conditions (2) –(5) and (13) . 

From Eq. (1) and condition (3) we can also obtain: 

s (t) ∫ 
0 

x ∫ 
0 

∂T 

∂t 
(ξ , t) dξdx = − k 

ρc 

[
T (0 , t) + 

∂T 

∂x 
(0 , t) s (t) 

]
. (14)

The refined heat balance integral method introduced in [29] to solve the problem (P) proposes the resolution of the

approximate problem that arises by replacing Eq. (1) by condition (14) , keeping all others conditions of the problem (P)

equal. It is defined as follows: conditions (2) –(5) and (14) . 

From the ideas put forward in [15] and inspired by Sadoun et al. [29] , we develop an alternative of the refined heat bal-

ance integral method. That is, the resolution of an approximate problem defined as follows: conditions (2), (3), (5), (12) and

(14) . 

For solving the problems previously defined we propose a quadratic temperature profile in space as follows: 

˜ T (x, t) = −˜ A �∞ 

(
1 − x ˜ s (t) 

)
− ˜ B �∞ 

(
1 − x ˜ s (t) 

)2 

, 0 < x < ̃

 s (t) , t > 0 . (15)

Taking advantage of the fact of having the exact temperature of the problem (P), it is physically reasonable to impose

that the approximate temperature given by (15) behaves in a similar manner than the exact one given by (6) ; that is: its

sign, monotony and convexity in space. As T verifies T < 0, ∂T 
∂x 

> 0 and 

∂ 2 T 
∂x 2 

< 0 on 0 < x < s ( t ), t > 0, we enforce the following

conditions on 

˜ T : ˜ T (x, t) < 0 , 

∂ ̃  T 

∂x 
(x, t) = 

�∞ ˜ s (t) 

(˜ A + 2 ̃

 B 

(
1 − x ˜ s (t) 

))
> 0 , 

∂ 2 ˜ T 

∂x 2 
(x, t) = −2 ̃

 B �∞ ˜ s 2 (t) 
< 0 , 

for all 0 < x < ̃

 s (t) , t > 0. Therefore, we obtain that the constants ˜ A and 

˜ B must be positive. 
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3.1. Approximate solution using the classical heat balance integral method 

The classical heat balance integral method in order to solve the problem (P) proposes the resolution of the approximate

problem defined as follows: 

Problem (P1) . Find the temperature T 1 = T 1 (x, t) at the solid region 0 < x < s 1 ( t ) and the location of the free boundary

x = s 1 (t) such that: 

d 

dt 

s 1 (t) ∫ 
0 

T 1 (x, t) dx = 

k 

ρc 

[
ρλ

k 
˙ s 1 (t) − ∂T 1 

∂x 
(0 , t) 

]
, 0 < x < s 1 (t) , t > 0 , (16) 

k 
∂T 1 
∂x 

(0 , t) = 

h √ 

t 
(T 1 (0 , t) + �∞ 

) , t > 0 , (17) 

T 1 (s 1 (t ) , t ) = 0 , t > 0 , (18) 

(
∂T 1 
∂x 

)2 

(s 1 (t ) , t ) = −λ

c 

∂ 2 T 1 
∂x 2 

(s 1 (t ) , t ) , t > 0 , (19) 

s 1 (0) = 0 . (20) 

A solution to problem (P1) will be an approximate one of the problem (P). Proposing the following quadratic temperature

profile in space: 

T 1 (x, t) = −A 1 �∞ 

(
1 − x 

s 1 (t) 

)
− B 1 �∞ 

(
1 − x 

s 1 (t) 

)2 

, (21) 

the free boundary takes the form: 

s 1 (t) = 2 ξ1 

√ 

αt , (22) 

where the constants A 1 , B 1 and ξ 1 will be determined from the conditions (16), (17) and (19) . Because of (21) and (22) , the

conditions (18) and (20) are immediately satisfied. From conditions (16) and (17) we obtain: 

A 1 = 

6 Ste − ( 6 + 2 Ste ) ξ 2 
1 − 6 

Bi 
ξ1 

Ste 
(
ξ 2 

1 
+ 

2 
Bi 
ξ1 + 3 

) , (23) 

B 1 = 

( 3 Ste + 6 ) ξ 2 
1 + 

3 
Bi 
ξ1 − 3 Ste 

Ste 
(
ξ 2 

1 
+ 

2 
Bi 
ξ1 + 3 

) . (24) 

From the fact that A 1 > 0 and B 1 > 0 we obtain that 0 < ξ 1 < ξmax and ξ 1 > ξmin > 0, respectively, where: 

ξmin = 

√ 


min − 1 
Bi 

2(2 + Ste ) 
, ξmax = 

√ 


max − 3 
Bi 

2(3 + Ste ) 
, (25) 

with 


min = 4 Ste 2 + 8 Ste + 

1 

Bi 
2 
, 
max = 12 Ste 2 + 36 Ste + 

9 

Bi 
2 
. (26) 

We have that ξmin < ξmax . In fact: 

ξmax − ξmin > 0 ⇔ (2 + Ste ) Bi 
√ 


max − (3 + Ste ) Bi 
√ 


min > 3 + 2 Ste 

⇔ 

[
(2 + Ste ) 2 Bi 

2 

max + (3 + Ste ) 2 Bi 

2 

min − (3 + 2 Ste ) 2 

]2 

−4(2 + Ste ) 2 (3 + Ste ) 2 Bi 
4 

min 
max > 0 

⇔ 16 Bi 
4 
Ste 2 

(
2 Ste 3 + 12 Ste 2 + 27 Ste + 18 

)2 
> 0 , 

which is automatically verified. 

Since A 1 and B 1 are defined from the parameters ξ 1 , Bi and Ste, condition (19) will be used to find the value of ξ 1 . In

this way, it turns out that ξ 1 must be a positive solution of the fourth degree polynomial equation: (
12 + 9 Ste + 2 Ste 2 

)
z 4 + 

21 + 6 Ste 

Bi 
z 3 + 

(
12 

Bi 
2 

− 42 Ste − 12 Ste 2 − 18 

)
z 2 + 

−30 Ste + 9 

Bi 
z + 9 Ste ( 1 + 2 Ste ) = 0 , ξmin 

1 < z < ξmax 
1 . (27) 
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Let us refer to p 1 = p 1 (z) as the polinomial function defined by the l.h.s of Eq. (27) . Then we focus on studying the

existence of roots of p 1 in the desired interval ( ξmin , ξmax ). 

Descartes’ rule of signs states that if the terms of a single-variable polynomial with real coefficients are ordered by

descending variable exponent, then the number of positive roots of the polynomial is either equal to the number of sign

differences between consecutive nonzero coefficients, or is less than it by an even number. Therefore, in our case we can

assure that p 1 can have at most two roots in R 

+ . 
In order to prove that at least one of this two positive roots belongs to the required range, (ξmin 

1 
, ξmax 

1 
) , we study the

sign of p 1 in the extremes of the interval. 

On one hand we have that: 

p 1 (ξ
min ) = −Q 1 

√ 


min + Q 2 , 

where 

Q 1 = 

(2 Ste + 3) 2 
(
2 Bi 

2 
( Ste 2 + 2 Ste ) + 1 

)
Bi 

3 
(2 + Ste ) 4 

, 

Q 2 = 

(2 Ste + 3) 2 
((

2 Ste 4 + 8 Ste 3 + 8 Ste 2 
)
Bi 

4 + 

(
4 Ste 2 + 8 Ste 

)
Bi 

2 + 1 

)
Bi 

4 
(2 + Ste ) 4 

. 

It is clear that Q 1 > 0 and Q 2 > 0. Therefore 

p 1 (ξ
min ) > 0 ⇔ Q 

2 
2 − Q 

2 
1 


min > 0 

⇔ 1024 Ste 4 
(
2 Ste 2 + 7 Ste + 6 

)4 
> 0 , 

which is automatically verified. 

On the other hand we have that: 

p 1 (ξ
max ) = Q 3 

√ 


max + Q 4 , 

where 

Q 3 = −
3(2 Ste + 3) 2 

(
Bi 

2 
(
Ste 2 − 9 

)
+ 3 

)
2 Bi 

3 
(3 + Ste ) 4 

, 

Q 4 = − 9 
2 
(2 Ste + 3) 2 

[
2 Bi 

4 
Ste 3 + 3 Bi 

2 
(4 Bi 

2 − 1) Ste 2 + 

+ 6 Bi 
2 
(3 Bi 

2 − 1) Ste + 3(3 Bi 
2 − 1) 

]
Bi 

−4 
(3 + Ste ) −4 . 

An easy computation shows that: 

Q 

2 
4 − 
max Q 

2 
3 = 6912 Ste 2 (3 Bi 

2 − 1)(2 Ste 2 + 9 Ste + 9) 4 . 

Therefore, it is clear that the following properties are satisfied: 

a. If Bi < 

√ 

3 
3 then: 

i) Q 3 < 0, ∀ Ste > 0. 

ii) Q 

2 
4 − 
max Q 

2 
3 < 0 , ∀ Ste > 0 . 

b. If Bi > 

√ 

3 
3 then: 

i) Q 3 > 0 if Ste < 

√ 

9 − 3 

Bi 2 
and Q 3 < 0 if Ste > 

√ 

9 − 3 

Bi 2 
. 

ii) Q 4 < 0, ∀ Ste > 0. 

iii) Q 

2 
4 − 
max Q 

2 
3 > 0 , ∀ Ste > 0 . 

c. If Bi = 

√ 

3 
3 then: 

i) Q 3 < 0, ∀ Ste > 0. 

ii) Q 4 < 0, ∀ Ste > 0. 

Then, let us prove that p 1 ( ξ
max ) < 0, ∀ Ste > 0, ∀ Bi > 0. 

In case Bi < 

√ 

3 
3 , we have from property a. i) that Q 3 < 0. 

If Q 4 ≤ 0, then p 1 ( ξ
max ) < 0 immediately. 

If Q 4 > 0 then 

p 1 (ξ
max ) < 0 ⇔ Q 3 

√ 


max + Q 4 < 0 

⇔ Q 3 

√ 


max < −Q 4 < 0 

⇔ Q 

2 
4 − 
max Q 

2 
3 < 0 , 

which is immediately verified from property a. (ii). 
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In case Bi > 

√ 

3 
3 , we have from property b. (ii) that Q 4 < 0. 

If Q 3 ≤ 0, then p 1 ( ξ
max ) < 0 immediately. 

If Q 3 > 0 then 

p 1 (ξ
max ) < 0 ⇔ Q 3 

√ 


max + Q 4 < 0 

⇔ 0 < Q 3 

√ 


max < −Q 4 

⇔ Q 

2 
4 − 
max Q 

2 
3 > 0 , 

which is immediately verified from property b. (iii). 

In case Bi = 

√ 

3 
3 , we have from properties c. (i) and c. (ii) that Q 3 < 0 and Q 4 < 0 which obviously imply that p 1 ( ξ

max ) < 0.

So far we can claim that p 1 ( ξ
min ) > 0 and p 1 ( ξ

max ) < 0, ∀ Ste > 0, ∀ Bi > 0. In addition, from the fact that p 1 has at most

two roots in R 

+ and p 1 (+ ∞ ) = + ∞ , we can conclude that p 1 has exactly one root on the interval ( ξmin , ξmax ). 

All the above analysis can be summarized in the following theorem: 

Theorem 3.1. The solution to the problem (P1), for a quadratic profile in space, is given by (21) and (22) , where the positive

constants A 1 and B 1 are defined by (23) and (24) respectively and ξ 1 is the unique solution of the polynomial Eq. (27) where

ξmin and ξmax are defined in (25) . 

3.2. Approximate solution using an alternative of the heat balance integral method 

An alternative method of the classical heat balance integral method in order to solve the problem (P) proposes the

resolution of the approximate problem defined as follows: 

Problem (P2) . Find the temperature T 2 = T 2 (x, t) at the solid region 0 < x < s 2 ( t ) and the location of the free boundary

x = s 2 (t) such that: 

d 

dt 

s 2 (t) ∫ 
0 

T 2 (x, t) dx = 

k 

ρc 

[
ρλ

k 
˙ s 2 (t) − ∂T 2 

∂x 
(0 , t) 

]
, 0 < x < s 2 (t) , t > 0 , (28) 

k 
∂T 2 
∂x 

(0 , t) = 

h √ 

t 
(T 2 (0 , t) + �∞ 

) , t > 0 , (29) 

T 2 (s 2 (t ) , t ) = 0 , t > 0 , (30) 

k 
∂T 2 
∂x 

(s 2 (t ) , t ) = ρλ ˙ s 2 (t) , t > 0 , (31) 

s 2 (0) = 0 . (32) 

A solution to the problem (P2), for a quadratic temperature profile in space, is obtained by 

T 2 (x, t) = −A 2 �∞ 

(
1 − x 

s 2 (t) 

)
− B 2 �∞ 

(
1 − x 

s 2 (t) 

)2 

, (33) 

s 2 (t) = 2 ξ2 

√ 

αt , (34) 

where the constants A 2 , B 2 y ξ 2 will be determined from the conditions (28), (29) and (31) of the problem (P2). The condi-

tions (30) and (32) are immediately satisfied. From conditions (28) and (29) , we obtain: 

A 2 = 

6 Ste − ( 6 + 2 Ste ) ξ 2 
2 − 6 

Bi 
ξ2 

Ste 
(
ξ 2 

2 
+ 

2 
Bi 
ξ2 + 3 

) , (35) 

B 2 = 

( 3 Ste + 6 ) ξ 2 
2 + 

3 
Bi 
ξ2 − 3 Ste 

Ste 
(
ξ 2 

2 
+ 

2 
Bi 
ξ2 + 3 

) . (36) 

Since A 2 and B 2 must be positive we obtain, as in problem (P1), that 0 < ξmin < ξ 2 < ξmax where ξmin and ξmax are

defined by (25) . 

The constants A 2 and B 2 , are expressed as a function of the parameters ξ 2 , Bi and Ste. By using condition (31) , the

coefficient ξ 2 is a positive solution of the fourth degree polynomial equation given by: 

z 4 + 

2 

Bi 
z 3 + ( 6 + Ste ) z 2 + 

3 

Bi 
z − 3 Ste = 0 , ξmin < z < ξmax . (37) 
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Notice that the polynomial function p 2 = p 2 (z) defined by the l.h.s of Eq. (37) is an increasing function in R 

+ that

assumes a negative value at z = 0 and goes to + ∞ when z goes to + ∞ . Hence, p 2 has a unique root in R 

+ . 
If we analyse the behaviour of p 2 on the interval ( ξmin , ξmax ) we can observe that: 

p 2 (ξ
min ) = R 1 

√ 


min − R 2 

where 
min is defined by Eq. (26) and 

R 1 = 

(2 Ste + 3)(2 Bi 
2 
Ste 2 + 4 Bi 

2 
Ste + 1) 

2 Bi 
3 
(2 + Ste ) 4 

> 0 , 

R 2 = 

(
Ste 2 (2 Ste + 3) 

(2 + Ste ) 2 
+ 

2 Ste (2 Ste 2 + 7 Ste + 6) 

Bi 
2 
(2 + Ste ) 4 

+ 

2 Ste + 3 

2 Bi 
4 
(2 + Ste ) 4 

)
> 0 , 

then 

p 2 (ξ
min ) < 0 ⇔ R 

2 
2 − R 

2 
1 


min > 0 

⇔ 256 Ste 4 (2 Ste + 3) 2 ( Ste + 2) 4 > 0 , 

which is immediately satisfied. 

Notice that p 2 (z) > ̂

 p 2 (z) for all z ∈ R 

+ , where ̂ p 2 (z) = (6 + Ste ) z 2 + 

3 
Bi 

z − 3 Ste . Furthermore 

̂ p 2 (ξ
max ) = −R 3 

√ 


max + R 4 

where 
max is defined by Eq. (26) and 

R 3 = 

9 

2 Bi (3 + Ste ) 2 
> 0 , 

R 4 = 

9 Ste 

(3 + Ste ) 
+ 

27 

2 Bi 
2 
(3 + Ste ) 2 

> 0 . 

Then, 

p 2 ( ξ
max ) > ̂

 p 2 ( ξ
max ) > 0 ⇔ R 

2 
4 − R 

2 
3 


max > 0 ⇔ 1296 Ste 2 ( Ste + 3) 2 > 0 , 

which is automatically verified. 

As consequence, Eq. (37) has a unique solution ξ 2 in the interval ( ξmin , ξmax ). Therefore, we have proved the following

theorem: 

Theorem 3.2. The solution to the problem (P2), for a quadratic profile in space, is given by (33) –(34) , where the positive constants

A 2 and B 2 are defined by (35) and (36) respectively and ξ 2 is the unique solution of the polynomial Eq. (37) where ξmin and

ξmax are defined in (25) . 

3.3. Approximate solution using the refined heat balance integral method 

The refined heat balance integral method in order to solve the problem (P), proposes the resolution of an approximate

problem formulated as follows: 

Problem (P3) . Find the temperature T 3 = T 3 (x, t) at the solid region 0 < x < s 3 ( t ) and the location of the free boundary

x = s 3 (t) such that: 

s 3 (t) ∫ 
0 

x ∫ 
0 

∂T 3 
∂t 

(ξ , t) dξdx = − k 

ρc 

[
T 3 (0 , t)+ 

+ 

∂T 3 
∂x 

(0 , t) s 3 (t) 

]
, 0 < x < s 3 (t) , t > 0 , (38)

k 
∂T 3 
∂x 

(0 , t) = 

h √ 

t 
(T 3 (0 , t) + �∞ 

) , t > 0 , (39)

T 3 (s 3 (t ) , t ) = 0 , t > 0 , (40)

k 
∂T 3 
∂x 

(s 3 (t ) , t ) = ρλ ˙ s 3 (t) , t > 0 , (41)

s 3 (0) = 0 . (42)
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A solution to the problem (P3) for a quadratic temperature profile in space is given by: 

T 3 (x, t) = −A 3 �∞ 

(
1 − x 

s 3 (t) 

)
− B 3 �∞ 

(
1 − x 

s 3 (t) 

)2 

, (43) 

and the free boundary is obtained of the form: 

s 3 (t) = 2 ξ3 

√ 

αt , (44) 

where the constants A 3 , B 3 y ξ 3 will be determined from the conditions (38), (39) and (41) of the problem (P3). From

conditions (38) and (39) we obtain: 

A 3 = 

2 ξ3 (3 − ξ 2 
3 ) 

1 
Bi 
ξ 2 

3 
+ 6 ξ3 + 

3 
Bi 

, (45) 

B 3 = 

2 ξ 3 
3 

1 
Bi 
ξ 2 

3 
+ 6 ξ3 + 

3 
Bi 

. (46) 

As is already know A 3 and B 3 must be positive thus we obtain that 0 < ξ3 < 

√ 

3 . On the other hand, since A 3 and B 3 are

defined from the parameters ξ 3 and Bi, condition (41) will be used to find the value of ξ 3 . In this way it turns out that ξ 3 

is a positive solution of the third degree polynomial equation: 

1 

Bi 
z 3 + ( 6 + Ste ) z 2 + 

3 

Bi 
z − 3 Ste = 0 , 0 < z < 

√ 

3 . (47) 

It is clear that the polynomial function p 3 = p 3 (z) defined by the l.h.s of Eq. (47) has a unique root in R 

+ . Moreover,

since we have that 

p 3 (0) = −3 Ste < 0 , 

p 3 ( 
√ 

3 ) = 

6 

√ 

3 

Bi 
+ 18 > 0 , 

we can assure that the unique positive solution ξ 3 to Eq. (47) belongs to the range (0 , 
√ 

3 ) . 

Therefore, we have proved the following theorem: 

Theorem 3.3. The solution to the problem (P3), for a quadratic profile in space, is given by (43) and (44) , where the positive

constants A 3 and B 3 are defined by (45) and (46) respectively and ξ 3 is the unique solution of the polynomial Eq. (47) . 

3.4. Approximate solution using an alternative of the refined heat balance integral method 

On this subsection, we develop an alternative of the refined heat balance integral method to solve the problem (P). This

method may consist on the resolution of the approximate problem defined as follows: 

Problem (P4) . Find the temperature T 4 = T 4 (x, t) at the solid region 0 < x < s 4 ( t ) and the location of the free boundary

x = s 4 (t) such that: 

s 4 (t) ∫ 
0 

x ∫ 
0 

∂T 4 
∂t 

(ξ , t) dξdx = − k 

ρc 

[
T 4 (0 , t)+ 

+ 

∂T 4 
∂x 

(0 , t) s 4 (t) 

]
, 0 < x < s 4 (t) , t > 0 , (48) 

k 
∂T 4 
∂x 

(0 , t) = 

h √ 

t 
(T 4 (0 , t) + �∞ 

) , t > 0 , (49) 

T 4 (s 4 (t ) , t ) = 0 , t > 0 , (50) 

(
∂T 4 
∂x 

)2 

(s 4 (t ) , t ) = −λ

c 

∂ 2 T 4 
∂x 2 

(s 4 (t ) , t ) , t > 0 , (51) 

s 4 (0) = 0 . (52) 
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A solution to the problem (P4) for a quadratic temperature profile in space is given by: 

T 4 (x, t) = −A 4 �∞ 

(
1 − x 

s 4 (t) 

)
− B 4 �∞ 

(
1 − x 

s 4 (t) 

)2 

, (53)

and the free boundary is obtained of the form: 

s 4 (t) = 2 ξ4 

√ 

αt , (54)

where the constants A 4 , B 4 y ξ 4 will be determined from the conditions (4 8), (4 9) and (51) . From conditions (48) and

(49) we obtain: 

A 4 = 

2 ξ4 (3 − ξ 2 
4 ) 

1 
Bi 
ξ 2 

4 
+ 6 ξ4 + 

3 
Bi 

, (55)

B 4 = 

2 ξ 3 
4 

1 
Bi 
ξ 2 

4 
+ 6 ξ4 + 

3 
Bi 

. (56)

As we know, A 4 and B 4 must be positive, thus 0 < ξ4 < 

√ 

3 . Moreover, since A 4 and B 4 are defined from the parameters

ξ 4 and Bi, condition (51) is used to find the value of ξ 4 . In this way, it turns out that ξ 4 is a positive solution of the fourth

degree polynomial equation: 

Ste z 4 − 1 

Bi 
z 3 − 6 ( 1 + Ste ) z 2 − 3 

Bi 
z + 9 Ste = 0 , 0 < z < 

√ 

3 . (57)

Notice that using Descartes’ rule of signs, we can assure that the polynomial function p 4 = p 4 (z) defined by the l.h.s of

Eq. (57) can have at most two possible roots in R 

+ . 
If we restrict the domain of p 4 to the interval (0 , 

√ 

3 ) we can observe that: 

p 4 (0) = 9 Ste > 0 , 

p 4 ( 
√ 

3 ) = −6 

√ 

3 

Bi 
− 18 < 0 . 

On the other hand we can see that p 4 (+ ∞ ) = + ∞ . Therefore the Eq. (57) has exactly two different solutions in R 

+ and

a unique solution ξ 4 in the interval (0 , 
√ 

3 ) . Then, we have the following theorem: 

Theorem 3.4. The solution to the problem (P4), for a quadratic profile in space, is given by (53) and (54) , where the positive

constants A 4 and B 4 are defined by (55) and (56) respectively and ξ 4 is the unique solution of the polynomial Eq. (57) . 

4. Analysis of the approximate solutions when Bi → ∞ 

In problem (P), a convective boundary condition (2) characterized by the coefficient h at the fixed face x = 0 is imposed.

This condition constitutes a generalization of the Dirichlet one in the sense that if we take the limit when h → ∞ we must

obtain T (0 , t) = −�∞ 

. From definition (11) , studying the limit behaviour of the solution to our problem when h → ∞ is

equivalent to study the case when Bi → ∞ . 

In [28] it was proved that the solution to problem (P) when h and so Bi goes to infinity converges to the solution to the

following problem: 

Problem ( P ∞ 

). Find the temperature T ∞ 

= T ∞ 

(x, t) at the solid region 0 < x < s ∞ 

( t ) and the location of the free boundary

x = s ∞ 

(t) such that: 

∂T ∞ 

∂t 
= 

k 

ρc 

∂ 2 T ∞ 

∂x 2 
, 0 < x < s ∞ 

(t) , t > 0 , (58)

T ∞ 

(0 , t) = −�∞ 

, t > 0 , (59)

T ∞ 

(s ∞ 

(t ) , t ) = 0 , t > 0 , (60)

k 
∂T ∞ 

∂x 
(s ∞ 

(t ) , t ) = ρλ ˙ s ∞ 

(t) , t > 0 , (61)

s ∞ 

(0) = 0 . (62)

whose exact solution, using the similarity technique, is given in [1,4,6] by: 

T ∞ 

(x, t) = −�∞ 

+ 

�∞ 

erf (ξ∞ 

) 
erf 

(
x 

2 

√ 

αt 

)
, (63)
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s ∞ 

(t) = 2 ξ∞ 

√ 

αt , (64) 

where ξ∞ 

is the unique positive solution of the following equation: 

z exp 

(
z 2 

)
erf ( z ) − Ste √ 

π
= 0 , z > 0 . (65) 

Notice that the solution T ( x , t ), s ( t ) to problem (P) given by formulas (6), (7) , depend on the parameters ξ , A and B which

in turns depend on the parameters Ste and Bi. Therefore, by “convergence” of the solution of (P) to the solution of (P ∞ 

)

it is understood that: for every Ste, x , t > 0 fixed: ξ → ξ∞ 

, A → A ∞ 

, B → B ∞ 

when Bi → ∞ . In this way it turns out that T ( x ,

t ) → T ∞ 

( x , t ) and s ( t ) → s ∞ 

( t ) is immediately verified when Bi → ∞ . 

Motivated by the previous ideas, we devote this section in the analysis of the limit behaviour of the solution of each

approximate problem (Pi), i = 1 , 2 , 3 , 4 when Bi goes to infinity. We will prove that the solution of each (Pi) converge to the

solution of a new problem (Pi ∞ 

) that is defined from (Pi) i = 1 , 2 , 3 , 4 by changing the convective boundary condition on

x = 0 , by a Dirichlet condition, as follows: 

Problem ( P 1 ∞ 

). Find the temperature T 1 ∞ 

= T 1 ∞ 

(x, t) at the solid region 0 < x < s 1 ∞ 

( t ) and the location of the free bound-

ary x = s 1 ∞ 

(t) such that: 

d 

dt 

s 1 ∞ (t) ∫ 
0 

T 1 ∞ 

(x, t) dx = 

k 

ρc 

[
ρλ

k 
˙ s 1 ∞ 

(t) −

+ 

∂T 1 ∞ 

∂x 
(0 , t) 

]
, 0 < x < s 1 ∞ 

(t) , t > 0 , (66) 

T 1 ∞ 

(0 , t) = −�∞ 

, t > 0 , (67) 

T 1 ∞ 

(s 1 ∞ 

(t ) , t ) = 0 , t > 0 , (68) 

(
∂T 1 ∞ 

∂x 

)2 

(s 1 ∞ 

(t ) , t ) = −λ

c 

∂ 2 T 1 ∞ 

∂x 2 
(s 1 ∞ 

(t ) , t ) , t > 0 , (69) 

s 1 ∞ 

(0) = 0 . (70) 

The solution to problem (P1 ∞ 

) obtained in [7] is given by: 

T 1 ∞ 

(x, t) = −A 1 ∞ 

�∞ 

(
1 − x 

s 1 ∞ 

(t) 

)
− B 1 ∞ 

�∞ 

(
1 − x 

s 1 ∞ 

(t) 

)2 

, (71) 

s 1 ∞ 

(t) = 2 ξ1 ∞ 

√ 

αt , (72) 

where the constants A 1 ∞ 

and B 1 ∞ 

are given by: 

A 1 ∞ 

= 

6 Ste − ( 6 + 2 Ste ) ξ 2 
1 ∞ 

Ste 
(
ξ 2 

1 ∞ 

+ 3 

) , (73) 

B 1 ∞ 

= 

( 3 Ste + 6 ) ξ 2 
1 ∞ 

− 3 Ste 

Ste 
(
ξ 2 

1 ∞ 

+ 3 

) , (74) 

In order that A 1 ∞ 

and B 1 ∞ 

be positive we need that 0 < ξmin ∞ 

< ξ1 ∞ 

< ξmax ∞ 

where: 

ξmin 
∞ 

= 

√ 

Ste 

2 + Ste 
and ξmax 

∞ 

= 

√ 

3 Ste 

3 + Ste 
. (75) 

Then ξ 1 ∞ 

must be a positive solution of the fourth degree polynomial equation: (
12 + 9 Ste + 2 Ste 2 

)
z 4 −

(
42 Ste + 12 Ste 2 + 18 

)
z 2 + 

+9 Ste (1 + 2 Ste ) = 0 , ξmin 
∞ 

< z < ξmax 
∞ 

. (76) 
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Notice that if we define define by p 1 ∞ 

= p 1 ∞ 

(z) the l.h.s of Eq. (76) , we obtain: 

p 1 ∞ 

(ξmin 
∞ 

) = 

2 Ste 2 (2 Ste + 3) 2 

( Ste + 2) 2 
> 0 , 

p 1 ∞ 

(ξmax 
∞ 

) = 

−9 Ste (2 Ste + 3) 2 

( Ste + 3) 2 
< 0 . 

Therefore due to the fact that (76) has exactly two positive solutions and p 1 ∞ 

(+ ∞ ) = + ∞ , we can assure that there is

one and only one root of p 1 ∞ 

in the interval (ξmin ∞ 

, ξmax ∞ 

) . That means: 

ξ1 ∞ 

= 

(
3(2 Ste + 1)( Ste + 3) − (9 + 6 Ste ) 

√ 

2 Ste + 1 

12 + 9 Ste + 2 Ste 2 

)1 / 2 

. (77)

Notice that this value of ξ 1 ∞ 

leads us to define A 1 ∞ 

and B 1 ∞ 

in an explicit form: 

A 1 ∞ 

= 

√ 

2 Ste + 1 − 1 

Ste 
, B 1 ∞ 

= 1 + 

1 − √ 

2 Ste + 1 

Ste 
(78)

The above reasoning can be summarized in the following theorem: 

Theorem 4.1. The solution to the problem (P1 ∞ 

), for a quadratic profile in space, is unique and it is given by (71) and (72) where

the positive constants A 1 ∞ 

, B 1 ∞ 

and ξ 1 ∞ 

are defined explicitly from the data of the problem by the expressions (78) and (77) ,

respectively. 

Once we obtain the solution to (P1 ∞ 

) we can state the following convergence result: 

Theorem 4.2. The solution to problem (P1) converges to the solution to problem (P 1 ∞ 

) when Bi → ∞ . In this case, by convergence

will be understand that for a fixed Ste > 0, T 1 ( x , t ) → T 1 ∞ 

( x , t ) and s 1 ( t ) → s 1 ∞ 

( t ) when Bi → ∞ , for every 0 < x < s 1 ∞ 

( t ) and t > 0 .

Proof. From problem (P1), if we fixed Ste > 0, we know that ξ1 = ξ1 ( Bi ) is the unique solution to Eq. (27) in the interval

( ξmin , ξmax ). If we take the limit when Bi → ∞ we obtain that lim Bi →∞ 

ξ1 ( Bi ) must be a solution of Eq. (76) in the interval

(ξmin ∞ 

, ξmax ∞ 

) . As the latter equation has a unique solution given by ξ 1 ∞ 

defined by (77) it results lim Bi →∞ 

ξ1 ( Bi ) = ξ1 ∞ 

. It

follows immediately that lim Bi →∞ 

s 1 (t, Bi ) = s 1 ∞ 

(t) . For the convergence of T 1 ( x , t , Bi) we prove by simple computations

that A 1 (Bi) → A 1 ∞ 

and B 1 (Bi) → B 1 ∞ 

, when Bi → ∞ . �

Problem ( P 2 ∞ 

). Find the temperature T 2 ∞ 

= T 2 ∞ 

(x, t) at the solid region 0 < x < s 2 ∞ 

( t ) and the location of the free bound-

ary x = s 2 ∞ 

(t) such that: 

d 

dt 

s 2 ∞ (t) ∫ 
0 

T 2 ∞ 

(x, t) dx = 

k 

ρc 

[
ρλ

k 
˙ s 2 ∞ 

(t) −

+ 

∂T 2 ∞ 

∂x 
(0 , t) 

]
, 0 < x < s 2 ∞ 

(t) , t > 0 , (79)

T 2 ∞ 

(0 , t) = −�∞ 

, t > 0 , (80)

T 2 ∞ 

(s 2 ∞ 

(t ) , t ) = 0 , t > 0 , (81)

k 
∂T 2 ∞ 

∂x 
(s 2 ∞ 

(t ) , t ) = ρλ ˙ s 2 ∞ 

(t) , t > 0 , (82)

s 2 ∞ 

(0) = 0 . (83)

The solution to problem (P2 ∞ 

), obtained in [15] , is given by: 

T 2 ∞ 

(x, t) = −A 2 ∞ 

�∞ 

(
1 − x 

s 2 ∞ 

(t) 

)
− B 2 ∞ 

�∞ 

(
1 − x 

s 2 ∞ 

(t) 

)2 

, (84)

s 2 ∞ 

(t) = 2 ξ2 ∞ 

√ 

αt , (85)
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where the constants A 2 ∞ 

and B 2 ∞ 

are given by: 

A 2 ∞ 

= 

6 Ste − ( 6 + 2 Ste ) ξ 2 
2 ∞ 

Ste 
(
ξ 2 

2 ∞ 

+ 3 

) , (86) 

B 2 ∞ 

= 

( 3 Ste + 6 ) ξ 2 
2 ∞ 

− 3 Ste 

Ste 
(
ξ 2 

2 ∞ 

+ 3 

) , (87) 

In order that A 2 ∞ 

and B 2 ∞ 

be positive, as in the problem (P1), we need that 0 < ξmin ∞ 

< ξ2 ∞ 

< ξmax ∞ 

where ξmin ∞ 

and ξmax ∞ 

are given in formulas (75) . Consequently ξ 2 ∞ 

must be a positive solution of the fourth degree polynomial equation: 

z 4 + ( 6 + Ste ) z 2 − 3 Ste = 0 , ξmin 
∞ 

< z < ξmax 
∞ 

, (88) 

Notice first that the polynomial function p 2 ∞ 

= p 2 ∞ 

(z) defined by the l.h.s of Eq. (88) , has a unique root in R 

+ . In

addition as we have 

p 2 ∞ 

(ξmin 
∞ 

) = 

−Ste 2 (2 Ste + 3) 

( Ste + 2) 2 
< 0 , 

p 2 ∞ 

(ξmax 
∞ 

) = 

9 Ste (2 Ste + 3) 2 

( Ste + 3) 2 
> 0 , 

we can assure that the unique positive root of p 2 ∞ 

is located on the interval (ξmin ∞ 

, ξmax ∞ 

) and it can be explicitly obtained

by the expression: 

ξ2 ∞ 

= 

( √ 

(6 + Ste ) 2 + 12 Ste − (6 + Ste ) 

2 

) 1 / 2 

. (89) 

Notice that the value of ξ 2 ∞ 

leads us to define A 2 ∞ 

and B 2 ∞ 

in an explicit form as well: 

A 2 ∞ 

= −2 ( Ste + 3 ) 

Ste 
+ 

12 ( 2 Ste + 3 ) 

Ste 

(√ 

Ste 2 + 24 Ste + 36 − Ste 

) , (90) 

B 2 ∞ 

= 

3( Ste + 2) 

Ste 
− 12(2 Ste + 3) 

Ste 

(√ 

Ste 2 + 24 Ste + 36 − Ste 

) . (91) 

The above reasoning can be summarized in the following theorem: 

Theorem 4.3. The solution to the problem (P2 ∞ 

), for a quadratic profile in space, is unique and it is given by (84) and (85) where

the positive constants A 2 ∞ 

, B 2 ∞ 

and ξ 2 ∞ 

are defined explicitly from the data of the problem by the expressions (90) , (91) and

(89) , respectively. 

The fact of having the exact solution to problem (P2 ∞ 

) allows us to proof the following result: 

Theorem 4.4. The solution to problem (P2) converges to the solution to problem (P 2 ∞ 

) when Bi → ∞ . 

Proof. It is analogous to the proof given in Theorem 4.2 . �

Problem ( P 3 ∞ 

). Find the temperature T 3 ∞ 

= T 3 ∞ 

(x, t) at the solid region 0 < x < s 3 ∞ 

( t ) and the location of the free bound-

ary x = s 3 ∞ 

(t) such that: 

s 3 ∞ (t) ∫ 
0 

x ∫ 
0 

∂T 3 ∞ 

∂t 
(ξ , t) dξdx = − k 

ρc 

[
T 3 ∞ 

(0 , t)+ 

+ 

∂T 3 ∞ 

∂x 
(0 , t) s 3 ∞ 

(t) 

]
, 0 < x < s 3 ∞ 

(t) , t > 0 , (92) 

T 3 ∞ 

(0 , t) = −�∞ 

, t > 0 , (93) 

T 3 ∞ 

(s 3 ∞ 

(t ) , t ) = 0 , t > 0 , (94) 

k 
∂T 3 ∞ 

∂x 
(s 3 ∞ 

(t ) , t ) = ρλ ˙ s 3 ∞ 

(t) , t > 0 , (95) 
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s 3 ∞ 

(0) = 0 . (96)

The solution to problem (P3 ∞ 

) is given by: 

T 3 ∞ 

(x, t) = −A 3 ∞ 

�∞ 

(
1 − x 

s 3 ∞ 

(t) 

)
− B 3 ∞ 

�∞ 

(
1 − x 

s 3 ∞ 

(t) 

)2 

, (97)

s 3 ∞ 

(t) = 2 ξ3 ∞ 

√ 

αt , (98)

where the constants A 3 ∞ 

and B 3 ∞ 

are: 

A 3 ∞ 

= 1 − ξ 2 
3 ∞ 

3 

, (99)

B 3 ∞ 

= 

1 

3 

ξ 2 
3 ∞ 

, (100)

As we impose that A 3 ∞ 

and B 3 ∞ 

must be positive, it is easily obtained that ξ 3 ∞ 

must belong to the interval (0 , 
√ 

3 ) .

Therefore ξ 3 ∞ 

is a positive solution of the second degree polynomial equation: 

( 6 + Ste ) z 2 − 3 Ste = 0 , 0 < z < 

√ 

3 , (101)

It it clear that the polynomial function p 3 ∞ 

= p 3 ∞ 

(z) defined by the l.h.s of (101) has a unique root in R 

+ . As we need

that this root be in a required range, we study the sign of p 3 ∞ 

in the extremes of the interval: 

p 3 ∞ 

(0) = −3 Ste < 0 , 

p 3 ∞ 

(√ 

3 

)
= 18 > 0 . 

Then, we can assure that the unique positive root of p 3 ∞ 

belongs to the interval (0 , 
√ 

3 ) and it is given by: 

ξ3 ∞ 

= 

√ 

3 Ste 

6 + Ste 
. (102)

Hence, A 3 ∞ 

and B 3 ∞ 

become explicitly defined by: 

A 3 ∞ 

= 

6 

6 + Ste 
, B 3 ∞ 

= 

Ste 

6 + Ste 
. (103)

The following theorem summarizes the previous reasoning: 

Theorem 4.5. The solution to the problem (P3 ∞ 

), for a quadratic profile in space, is unique and it is given by (97) and (98) where

the positive constants A 3 ∞ 

, B 3 ∞ 

and ξ 3 ∞ 

are defined explicitly from the data of the problem by the expressions (103) and (102) ,

respectively. 

Theorem 4.6. The solution to problem (P3) converges to the solution to problem (P 3 ∞ 

) when Bi → ∞ . 

Proof. It is analogous to the proof of Theorem 4.2 . �

Problem ( P 4 ∞ 

). Find the temperature T 4 ∞ 

= T 4 ∞ 

(x, t) at the solid region 0 < x < s 4 ∞ 

( t ) and the location of the free bound-

ary x = s 4 ∞ 

(t) such that: 

s 4 ∞ (t) ∫ 
0 

x ∫ 
0 

∂T 4 ∞ 

∂t 
(ξ , t) dξdx = − k 

ρc 
[ T 4 ∞ 

(0 , t)+ (104)

+ 

∂T 4 ∞ 

∂x 
(0 , t) s 4 ∞ 

(t) 

]
, 0 < x < s 4 ∞ 

(t) , t > 0 , (105)

T 4 ∞ 

(0 , t) = −�∞ 

, t > 0 , (106)

T 4 ∞ 

(s 4 ∞ 

(t ) , t ) = 0 , t > 0 , (107)

(
∂T 4 ∞ 

∂x 

)2 

(s 4 ∞ 

(t ) , t ) = −λ

c 

∂ 2 T 4 ∞ 

∂x 2 
(s 4 ∞ 

(t ) , t ) , t > 0 , (108)
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s 4 ∞ 

(0) = 0 . (109) 

The solution to problem (P4 ∞ 

) is given by: 

T 4 ∞ 

(x, t) = −A 4 ∞ 

�∞ 

(
1 − x 

s 4 ∞ 

(t) 

)
− B 4 ∞ 

�∞ 

(
1 − x 

s 4 ∞ 

(t) 

)2 

(110) 

s 4 ∞ 

(t) = 2 ξ4 ∞ 

√ 

αt , (111) 

where the constants A 4 ∞ 

and B 4 ∞ 

are given by: 

A 4 ∞ 

= 1 − ξ 2 
4 ∞ 

3 

, (112) 

B 4 ∞ 

= 

1 

3 

ξ 2 
4 ∞ 

> 0 . (113) 

As in problem (P3 ∞ 

), the coefficients A 4 ∞ 

and B 4 ∞ 

must be positive. Therefore it turns out that ξ 4 ∞ 

must belong to the

interval (0 , 
√ 

3 ) . From this fact we have that ξ 4 ∞ 

is a positive solution of the fourth degree polynomial equation: 

Ste z 4 − 6 ( 1 + Ste ) z 2 + 9 Ste = 0 , 0 < z < 

√ 

3 , (114) 

Let us call by p 4 ∞ 

= p 4 ∞ 

(z) the l.h.s of Eq. (114) . Notice first that p 4 ∞ 

can have at most two roots in R 

+ . In addition: 

p 4 ∞ 

(0) = 9 Ste > 0 , p 4 ∞ 

( 
√ 

3 ) = −18 < 0 , p 4 ∞ 

(+ ∞ ) = + ∞ . 

Consequently it becomes that p 4 ∞ 

has a unique solution on the interval (0 , 
√ 

3 ) which can be explicitly defined by: 

ξ4 ∞ 

= 

( 

3 

(
( 1 + Ste ) −

√ 

2 Ste + 1 

)
Ste 

) 1 / 2 

. (115) 

Thus we get: 

A 4 ∞ 

= 

√ 

2 Ste + 1 − 1 

Ste 
, B 4 ∞ 

= 

1 + Ste − √ 

2 Ste + 1 

Ste 
, (116) 

and therefore we have the following theorem: 

Theorem 4.7. The solution to the problem (P4 ∞ 

), for a quadratic profile in space, is unique and it is given by (110) and

(111) where the positive constants A 4 ∞ 

, B 4 ∞ 

and ξ 4 ∞ 

are defined explicitly from the data of the problem by the expressions 

(116) and (115) , respectively. 

Consequently, we have the following convergence theorem: 

Theorem 4.8. The solution to problem (P4) converges to the solution to problem (P 4 ∞ 

) when Bi → ∞ . 

Proof. It is analogous to the proof given in Theorem 4.2 . �

5. Comparisons with the exact solution 

In this section comparisons between the known exact solution of the Stefan problem (P) and the approximate solu-

tions associated to each problem (Pi), i = 1 , 2 , 3 , 4 are done. Furthermore, in view of the convergence results presented in

Section 4 , we compare the exact solution to problem (P) where a convective boundary condition at the fixed face is imposed

with the exact solution of problem (P ∞ 

) in which a Dirichlet boundary condition is taken into account. The same is done

with each approximate solution obtained from problem (Pi) and (Pi ∞ 

), i = 1 , 2 , 3 , 4 . 

5.1. Comparisons between the free boundaries 

To compare the free boundaries obtained in each problem, we compute the coefficient that characterizes the free bound-

ary in the exact problem (P) and the approximate problems (Pi) i = 1 , 2 , 3 , 4 . The exact value of ξ and the different ap-

proaches ξ i i = 1 , 2 , 3 , 4 are obtained by solving the equations obtained in Sections 2 and 3 . 

In the cases of problems (P ∞ 

) and (Pi ∞ 

) we compute: the exact value ξ∞ 

, by solving a nonlinear equation, and the

different approaches ξ i ∞ 

, i = 1 , 2 , 3 , 4 by closed expressions that were obtained in Section 4 . 

In order to make visible the accuracy of each approximate method; fixing some Stefan and Biot numbers we calculate

for i = 1 , 2 , 3 , 4 : the relative error of the free boundary associated to problem (Pi) given by E rel (s i ) = | ξi −ξ
ξ

| and the relative

error associated to problem (Pi ∞ 

) defined by E rel (s i ∞ 

) = | ξi ∞ 

−ξ∞ 

ξ∞ 

| . 
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Fig. 1. Relative errors of s 1 , s 2 and s 3 against Bi for Ste = 10 −3 . 

Fig. 2. Relative errors of s 1 , s 2 and s 3 against Bi for Ste = 1 . 

 

 

 

 

 

 

 

Varying Ste and Bi numbers, we obtain different visualizations for the behaviour of the relative error committed in each

method. Since similar plots were obtained for a great number of cases, we present here the most significant ones. For

Ste = 10 −3 , 1 , 10 we compute E rel ( s i ∞ 

) for i = 1 , 2 , 3 , 4 . Also, for those Ste numbers and making Bi vary between 0 and a

suitable value in which the convergence can be appreciated, we compute E rel ( s i ), i = 1 , 2 , 3 , 4 . Figs. 1 –3 shows the behaviour

of the relative errors that correspond to the problem (Pi) and (Pi ∞ 

) for i = 1 , 2 , 3 . The plot that corresponds to (P4) and

(P4 ∞ 

) is presented separately so that the error is better noticed (see Fig. 4 ). 

From the numerical analysis we observe that for Ste < 1 and varying Bi number, (P2) and (P3) gives the best approxima-

tion of the free boundary. 

In addition, (P4) does not constitute a good approximation. It is worth to mention that taking a Stefan number up to

about 1 covers most of phase change materials. 

In the cases for Ste > 1 we see that the best approximations are given by (P1) and (P2). 
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Fig. 3. Relative errors of s 1 , s 2 and s 3 against Bi for Ste = 10 . 

Fig. 4. Relative errors of s 4 against Bi for Ste = 10 −3 , 1 , 10 . 

 

 

 

 

 

 

5.2. Comparisons between the temperature profiles 

Considering the 1D solidification process in the region x > 0, we fix the physical parameters for ice given by: the thermal

conductivity k = 2 . 219 W/(m °C), the specific heat c = 2097 . 6 J/(kg K), the thermal diffusivity α = 1 . 15 × 10 −6 m 

2 /s and the

latent heat of fusion λ = 3 . 33 × 10 5 J/kg. 

In order to show the behaviour of the temperature of problems (P), (Pi), i = 1 , 2 , 3 , 4 with respect to the space variable x ,

we fix the time at t = 10 s, the neighbourhood temperature at the fixed face �∞ 

= 5 ◦C and the coefficient that characterizes

the heat transfer at the fixed face h = 1 . 65 × 10 5 W 

√ 

s /(m °C). Notice that this choices lead us to define the Stefan number

and Biot number as: Ste = 0 . 0314 and Bi = 80 . 

In Fig. 5 we compare the four approximate temperatures given by T i ( i = 1 , 2 , 3 , 4 ) with the exact solution T given by (6) .

In addition we plot the temperature T ∞ 

with the purpose of showing the convergence when Bi is large. 
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Fig. 5. Plot of the profile temperatures at t = 10 s for Ste = 0.0314 and Bi = 80. 

Table 1 

Absolute errors of temperature approximations at t = 10 s. 

Position x E abs ( T 1 ) E abs ( T 2 ) E abs ( T 3 ) E abs ( T 4 ) 

0 0.023661 0.024332 0.0 0 0581 0.0993 

0.0 0 01 0.018960 0.021135 0.002256 0.3339 

0.0 0 02 0.016015 0.018719 0.004368 0.5690 

0.0 0 03 0.014576 0.016830 0.006667 0.8042 

0.0 0 04 0.014391 0.015219 0.008902 1.0395 

0.0 0 05 0.015212 0.013637 0.010823 1.2744 

0.0 0 06 0.016789 0.011835 0.012183 1.5088 

0.0 0 07 0.018877 0.009567 0.012735 1.7424 

0.0 0 08 0.021231 0.006587 0.012234 1.9749 

0.0 0 09 0 0 0 1.7843 

0.001 0 0 0 1.4467 

 

 

 

 

 

 

 

 

 

 

 

 

 

Before giving results, notice that in Fig. 5 we can appreciate that neither the plot of the exact temperature corresponds

to an error function nor the plot of the approximate ones corresponds to quadratic functions in space. The main reason of

this fact is because the range of x (position) is not large enough to perceive this type of curves. 

From Fig. 5 , we can easily observe that (P4) gives the worst approximation for the temperature; whereas the approaches

obtained by problems (P1), (P2) and (P3) are difficult to distinguish from each other and more importantly from the exact

solution. As a consequence to make the difference between the curves clearer we present the following tables of absolute

errors defined by E abs (T i ) = | T (x, 10) − T i (x, 10) | , for i = 1 , 2 , 3 , 4 . 

In Table 1 we can see that the accuracy of the temperatures corresponding to problems (P1), (P2) and (P3) is lower than

0.025. 

If we analyse the absolute error between x = 0 . 0 0 082 and x = 0 . 0 0 083 ( Table 2 ), we obtain that the problem (P2) gives

the most suitable approach to the free boundary, as we have already seen in the previous subsection. 

6. Conclusion 

In this paper, approximate analytical solutions by using some variations of the classical heat balance integral method

are obtained for a one-dimensional one-phase Stefan problem (P) with a convective (Robin) boundary condition at the fixed

face. 

This work provides information about which approximate method to choose for approaching the solution to the solidifi-

cation problem (P), according to the data of the problem (Ste and Bi number). 

The approximate techniques for tracking the free boundary used throughout this work corresponds to the heat balance

integral method (P1); an alternative of the heat balance integral method (P2); the refined integral method (P3) and an

alternative of the refined integral method (P4). The alternatives forms proposed here are inspired in [15] and consist in

re-working or not the Stefan condition (4) . 
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Table 2 

Absolute errors of temperature approximations at t = 10 s. 

Position x E abs ( T 1 ) E abs ( T 2 ) E abs ( T 3 ) E abs ( T 4 ) 

0.0 0 0820 0.021712 0.0058853 0.011986 2.0213 

0.0 0 0821 0.021736 0.0058492 0.011972 2.0236 

0.0 0 0822 0.021760 0.0058129 0.011958 2.0259 

0.0 0 0823 0.021784 0.0057766 0.011944 2.0283 

0.0 0 0824 0.021809 0.0057401 0.011930 2.0306 

0.0 0 0825 0.021833 0.0057035 0.011916 2.0329 

0.0 0 0826 0.021187 0.0049971 0.011231 2.0345 

0.0 0 0827 0.015511 0 0.005516 2.0312 

0.0 0 0828 0.009834 0 0 2.0278 

0.0 0 0829 0.004158 0 0 2.0244 

0.0 0 0830 0 0 0 2.0210 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In most of cases, due to the nonlinearity of the Stefan problems there is no analytical solution. In case of problem (P) the

exact solution is available recently in the literature [28] , so that the main advantage is that we can compare the different

approaches with the exact solution and consequently estimate the accuracy of the different approximate methods. 

Therefore it can be said that in general the optimal approximate technique for solving (P) is given by the alternative form

of the heat balance integral method defined by (P2), in which the Stefan condition is not removed and remains equal to the

exact problem. 
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