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One dimensional Stefan problems for a semi-infinite material with temperature
dependent thermal coefficients are considered. Existence and uniqueness of solution
are obtained imposing a Dirichlet, a Neumann or a Robin type condition at fixed
face x = 0. Moreover, it is proved that the solution of the problem with the Robin
type condition converges to the solution of the problem with the Dirichlet condition
at the fixed face. Computational examples are provided.
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1. Introduction

The one-phase Stefan problem (or Lamé–Clapeyron–Stefan problem) for a semi-infinite material is a free
boundary problem for the heat equation, which requires the determination of the temperature distribution
T of the liquid phase (melting problem) or the solid phase (solidification problem) and the evolution of the
free boundary x = s(t). Phase change problems appear frequently in industrial processes and other problems
of technological interest [1–6]. The Lamé–Clapeyron–Stefan problem is non-linear even in its simplest form
due to the free boundary conditions. If the thermal coefficients of the material are temperature-dependent,
we have a doubly non-linear free boundary problem. Some other models involving temperature-dependent
thermal conductivity can also be found in [7–21] and with variable latent heat in [22,23].

In this paper, we consider two one-phase fusion problems with a temperature-dependent thermal conduc-
tivity k(T ) and specific heat c(T ). In one of them, it is assumed a Dirichlet condition at the fixed face x = 0
and in the second case a Robin condition is imposed. The mathematical model of the governing process is
described as follows:

ρc(T )∂T

∂t
= ∂

∂x

(
k(T )∂T

∂x

)
, 0 < x < s(t), t > 0, (1.1)
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T (0, t) = T 0 , t > 0, (1.2)
T (s(t), t) = Tf , t > 0, (1.3)

k0
∂T

∂x
(s(t), t) = −ρlṡ(t), t > 0, (1.4)

s(0) = 0, (1.5)

where the unknown functions are the temperature T = T (x, t) and the free boundary x = s(t) separating
both phases. The parameters ρ > 0 (density), l > 0 (latent heat per unit mass), T0 > 0 (temperature
imposed at the fixed face x = 0) and Tf < T0 (phase change temperature at the free boundary x = s(t)) are
all known constants. The functions k and c are defined as:

k(T ) = k0

(
1 + δ

(
T −Tf

T0−Tf

)p)
(1.6)

c(T ) = c0

(
1 + δ

(
T −Tf

T0−Tf

)p)
, (1.7)

where δ and p are given non-negative constants, k0 = k(Tf ) and c0 = c(Tf ) are the reference thermal
conductivity and the specific heat, respectively.

The problem (1.1)–(1.5) was firstly considered in [24] where an equivalent ordinary differential problem
was obtained. In [25], the existence of an explicit solution of a similarity type by using a double fixed point
was given when the thermal coefficients are bounded and Lipschitz functions.

We are interested in obtaining a similarity solution to problem (1.1)–(1.5). More precisely, one in which
the temperature T = T (x, t) can be written as a function of a single variable. Through the following change
of variables:

y(η) = T (x,t)−Tf

T0−Tf
≥ 0 (1.8)

with
η = x

2a
√

t
, 0 < x < s(t), t > 0, (1.9)

the phase front moves as
s(t) = 2aλ

√
t (1.10)

where a2 = k0
ρc0

(thermal diffusivity) and λ > 0 is a positive parameter to be determined.
It is easy to see that the Stefan problem (1.1)–(1.5) has a similarity solution (T, s) given by:

T (x, t) = (T0 − Tf ) y
(

x
2a

√
t

)
+ Tf , 0 < x < s(t), t > 0, (1.11)

s(t) = 2aλ
√

t, t > 0 (1.12)

if and only if the function y and the parameter λ > 0 satisfy the following ordinary differential problem:

2η(1 + δyp(η))y′(η) + [(1 + δyp(η))y′(η)]′ = 0, 0 < η < λ, (1.13)
y(0) = 1, (1.14)
y(λ) = 0, (1.15)
y′(λ) = − 2λ

Ste (1.16)

where δ ≥ 0, p ≥ 0 and Ste = c0(T0−Tf )
l > 0 is the Stefan number.

In [24], the solution to the ordinary differential problem (1.13)–(1.16) was approximated by using shifted
Chebyshev polynomials. Although, in this paper was provided the exact solution for the particular cases
p = 1 and p = 2, the aim of our work is to prove existence and uniqueness of solution for every δ ≥ 0
and p ≥ 0. The particular case with δ = 0, i.e. with constant thermal coefficients, and p = 1 was studied
in [13,14,26,27].
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In Section 2, we are going to prove existence and uniqueness of problem (1.1)–(1.5) through analysing the
ordinary differential problem (1.13)–(1.16).

In Section 3, we will present a similar problem but with a generalized condition at the fixed face x = 0
as in [28]:

k(T (0, t))∂T

∂x
(0, t) = h√

t
(εT (0, t) − T0) , (1.17)

with ε ∈ [0, 1].
If we specify ε = 0, we can rewrite (1.17) as a Neumann condition:

k(T (0, t))∂T

∂x
(0, t) = − q√

t
, (1.18)

where q = hT0 characterizes prescribed heat flux at the fixed face x = 0.
For the special case ε = 1, the condition (1.17) represents a Robin type condition given by

k(T (0, t))∂T

∂x
(0, t) = h√

t
(T (0, t) − T0) , (1.19)

where h > 0 is the generalized thermal transfer coefficient and T0 is the bulk temperature.
We will prove existence and uniqueness of solution to both problems, in a similar way that we did for the

preceding section.
Finally, in Section 4, we will study the asymptotic behaviour when h → +∞, for the problem with Robin

type condition (1.19).

2. Existence and uniqueness of solution to the problem with Dirichlet condition at the fixed face x = 0

We will study the existence and uniqueness of solution to the problem (1.1)–(1.5) through the ordinary
differential problem (1.13)–(1.16).

Lemma 2.1. Let p ≥ 0, δ ≥ 0, λ > 0, y ∈ C∞[0, λ] and y ≥ 0, then (y, λ) is a solution to the ordinary
differential problem (1.13)–(1.16) if and only if λ is the unique solution to

f(x) = g, x > 0, (2.1)

and y verifies
F (y(η)) = G(η), 0 < η < λ, (2.2)

where

g = 1 + δ
p+1 , f(x) =

√
π

Ste x exp(x2) erf(x), (2.3)

F (x) = x + δ
p+1 xp+1, G(x) =

√
π

Ste λ exp(λ2) (erf(λ) − erf(x)) . (2.4)

Proof. Let (y, λ) be a solution to problem (1.13)–(1.16).
Let us define v(η) = (1 + δyp(η)) y′(η). Taking into account the ordinary differential equation (1.13) and

condition (1.14), v can be rewritten as v(η) = (1 + δ)y′(0) exp(−η2). Therefore

y′(η) + δyp(η)y′(η) = (1 + δ)y′(0) exp(−η2). (2.5)

If we integrate (2.5) from 0 to η, and using conditions (1.14)–(1.15) we obtain

y(η) + δ
p+1 yp+1(η) = 1 + δ

p+1 −
√

π
Ste λ exp(λ2) erf(η) (2.6)
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If we take η = λ in the above equation, by (1.15), we get (2.1). Furthermore, from (2.1) we can rewrite
(2.6) as (2.2).

Reciprocally, if (y, λ) is a solution to (2.1)–(2.2) we have

y(η) = − δ
p+1 yp+1(η) +

(
1 + δ

p+1

) (
1 − erf(η)

erf(λ)

)
. (2.7)

An easy computation shows that (y, λ) is a solution to the ordinary differential problem (1.13)–(1.16). □

According to the above result, we proceed to show that there exists a unique solution to problem
(2.1)–(2.2).

Lemma 2.2. If p ≥ 0 and δ ≥ 0, then there exists a unique solution (y, λ) to the problem (2.1)–(2.2) with
λ > 0, y ∈ C∞[0, λ] and y ≥ 0.

Proof. In virtue that f given by (2.3) is an increasing function such that f(0) = 0 and f(+∞) = +∞,
there exists a unique solution λ > 0 to Eq. (2.1). Now, for this λ > 0, it is easy to see that F given by (2.4)
is an increasing function, so that we can define F −1 : [0, +∞) → [0, +∞). As G defined by (2.4) is a positive
function, we have that there exists a unique solution y ∈ C∞[0, λ] of Eq. (2.2) given by

y(η) = F −1 (G(η)) , 0 < η < λ. □ (2.8)

Remark 2.3. On one hand we have that F is an increasing function with F (0) = 0 and F (1) = 1 + δ
p+1 .

On the other hand, G is a decreasing function with G(0) = 1 + δ
p+1 and G(λ) = 0. Then it follows that

0 ≤ y(η) ≤ 1, for 0 < η < λ.

From the above lemmas we are able to claim the following result:

Theorem 2.4. The Stefan problem governed by (1.1)–(1.5) has a unique similarity type solution given by
(1.11)–(1.12) where (y, λ) is the unique solution to the functional problem (2.1)–(2.2).

Remark 2.5. In virtue of Remark 2.3 and Theorem 2.4 we have that

Tf < T (x, t) < T0, 0 < x < s(t), t > 0.

Remark 2.6. If T is a solution of the free boundary problem (1.1)–(1.5) we can define the Kirchhoff
transformation

θ(x, t) =
∫ T (x,t)

Tf

[
1 + δ

(
ξ−Tf

T0−Tf

)p]
dξ (2.9)

and we obtain for the new unknown θ the classical one-phase Stefan problem with constant thermal
coefficient given by

∂θ

∂t
= α0

∂θ2

∂x2 , 0 < x < s(t), t > 0, (2.10)

θ(0, t) = (T 0 − Tf )
(

1 + δ
1+p

)
, t > 0, (2.11)

θ(s(t), t) = 0, t > 0, (2.12)

k0
∂θ

∂x
(s(t), t) = −ρlṡ(t), t > 0, (2.13)

s(0) = 0, (2.14)
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whose solution is given by: [1]⎧⎪⎪⎨⎪⎪⎩ θ(x, t) = (T 0 − Tf )
(

1 + δ
p+1

) ⎡⎣1 −
erf

(
x

2
√

α0t

)
erf(λ)

⎤⎦
s(t) = 2λ

√
α0t

where λ > 0 is the unique solution to the equation:

x erf(x) exp(x2) = Ste√
π

(
1 + δ

2
)

, x > 0 (2.15)

with
Ste = c0 (T0 − Tf )

l
. (2.16)

Conversely, if θ is the solution of the free boundary (2.10)–(2.14) then the temperature T = T (x, t) defined
by considering

∂T

∂x
= k0

k(T )
∂θ

∂x
,

∂T

∂t
= k0

k(T )
∂θ

∂t
(2.17)

and the equivalent expression of (2.9) given by

θ(x, t) = (T (x, t) − Tf )
[(

1 + δ
p+1

(
T (x,t)−Tf

T0−Tf

)p)]
(2.18)

is a solution of the problem (1.1)–(1.5). In any case, the explicit solution of the free boundary problem
(1.1)–(1.5) is given by the expressions (1.11)–(1.12) as it was proved in Theorem 2.4.

Remark 2.7. For the particular case p = 1, δ ≥ 0, the solution to the problem (2.1)–(2.2) is given by

y(η) = 1
δ

[√
(1 + δ)2 − δ(2 + δ) erf(η)

erf(λ) − 1
]

, 0 < η < λ, (2.19)

where λ verifies
λ exp(λ2) erf(λ) = Ste√

π

(
1 + δ

2
)

. (2.20)

In fact, if p = 1 Eq. (2.2) is given by

y2(η) + 2
γ y(η) − (1 + 2

γ )
[
1 − erf(η)

erf(λ)

]
= 0 (2.21)

which has a unique positive solution obtained by the expression (2.19).

In view of Lemma 2.2 and Remark 2.3, we can compute the solution (y, λ) to the ordinary differential
problem (1.13)–(1.16), by using its functional formulation.

In Fig. 1, for different values of p, we plot the solution (y, λ) to the problem (2.1)–(2.2). In order to
compare the obtained solution y, we extend them by zero for every η > λ. We assume δ = 5 and Ste = 0.5. It
must be pointed out that the choice for Ste is due to the fact that for most phase-change material candidates
over a realistic temperature, the Stefan number will not exceed 1 (see [29]).

Although it can be analytically deduced from Eq. (2.1), we can observe graphically that as p increases,
the value of λ decreases.

In view of Lemma 2.1, we can also plot the solution (T, s) to the problem (1.13)–(1.16).
In Fig. 2 we present a colourmap for the temperature T = T (x, t) extending it by zero for x > s(t).
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Fig. 1. Plot of function y for different values of p = 1, 5, 10, fixing δ = 5 and Ste = 0.5.

Fig. 2. Colourmap for the temperature T = T (x, t) function fixing δ = 1, p = 1, Ste = 0.5, Tf = 0, T0 = 10 and a = 1. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3. Existence and uniqueness of solution to the problem with Neumann and Robin conditions at the fixed
face x = 0

In this section we are going to consider a Stefan problem with a generalized boundary condition at the
fixed face (1.17) that represents a Neumann or a Robin condition for the cases ε = 0, ε = 1, respectively.
This heat input is the true relevant physical condition due to the fact that it establishes that the incoming
flux at the fixed face is proportional to the difference between the temperature at the surface of the material
and the ambient temperature to be imposed.

Let us consider the free boundary problem given by (1.1), (1.3)–(1.5) and the convective condition (1.17)
instead of the temperature condition (1.2) at the fixed face x = 0.

The temperature-dependent thermal conductivity k(T ) and the specific heat c(T ) are given by (1.6) and
(1.7), respectively.

As in the above section, we are searching a similarity type solution. If we define the change of variables
as (1.8)–(1.9), the phase front moves as (1.10) where a2 = k0

ρc0
(thermal diffusivity) and λγ is a positive

parameter to be determined.
It follows that (Tγ , sγ) is a solution to (1.1), (1.3)–(1.5) and (1.17) if and only if the function yγ defined

by (1.13) and the parameter λγ > 0 given by (1.10) satisfy (1.13), (1.15), (1.16) and

(1 + δyp(0)) y′(0) = γ (εy(0) − 1) , (3.1)
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where δ ≥ 0, p ≥ 0, ε ∈ [0, 1],
γ = 2Bi and Bi = ha

k0
, (3.2)

where Bi > 0 is the generalized Biot number.
With a few slight changes on the results obtained in the previous section, the following assertions can be

established:

Lemma 3.1. Let p ≥ 0, δ ≥ 0, γ > 0, ε ∈ [0, 1], λγ > 0, yγ ∈ C∞[0, λγ ] and yγ ≥ 0, then (yγ , λγ) is a
solution to the ordinary differential problem (1.13), (1.15), (1.16) and (3.1) if and only if λγ is the unique
solution to the following equation

Fε(βγ(x)) = fε(x), x > 0, (3.3)

and yγ verifies
F (yγ(η)) = Gγ(η), 0 < η < λγ (3.4)

where F is given by (2.4) and

Fε(x) = εpx + δ
p+1 xp+1, (3.5)

fε(x) = εp+1
√

π
Ste x exp(x2) erf(x), (3.6)

βγ(x) = 1 − 2x exp(x2)
γ Ste , 0 ≤ x ≤ λ0 = β−1

γ (0), (3.7)

Gγ(x) =
λγ exp

(
λ2

γ

) √
π

Ste (erf(λγ) − erf(x)) , 0 < x < λγ . (3.8)

Proof. Let (yγ , λγ) be a solution to problem (1.13), (1.15), (1.16) and (3.1).
Let us define w(η) =

(
1 + δyp

γ(η)
)

y′
γ(η). Taking into account the ordinary differential equation (1.13) and

the conditions (1.15), (3.1), w can be rewritten as w(η) = y′
γ(λγ) exp(λ2

γ) exp(−η2). Therefore

y′
γ(η) + δyp

γ(η)y′
γ(η) = y′

γ(λγ) exp(λ2
γ) exp(−η2). (3.9)

If we integrate (2.5) from η to λγ and using conditions (1.15), (1.16) and (3.1) we obtain that yγ

verifies (3.4).
If we take η = 0 in (3.4) we get

yγ(0) + δ
p+1 yp+1

γ (0) =
√

π
Ste λγ exp(λ2

γ) erf(λγ). (3.10)

Furthermore, if we differentiate equation (3.4) and computing this derivative at η = 0 we obtain:

y′
γ(0) + δyp

γ(0)y′
γ(0) = − 2λγ exp(λ2

γ)
Ste , (3.11)

and from (3.1) and (3.11) we obtain that (3.3) holds.
Reciprocally, if (yγ , λγ) is a solution to (3.3)–(3.4), an easy computation shows that (yγ , λγ) verifies (1.13),

(1.15), (1.16) and (3.1). □

Remark 3.2. The notations λγ and yγ are adopted in order to emphasize the dependence of the solution
to problem (1.13), (1.15), (1.16) and (3.1) on γ, although it also depends on p and δ. This fact is going to
facilitate the subsequent analysis of the asymptotic behaviour of yγ when γ → ∞ (h → ∞) to be presented
in Section 4.

Lemma 3.3. If p ≥ 0, δ ≥ 0, γ > 0 and ε ∈ [0, 1], then there exists a unique solution (yγ , λγ) to the problem
(3.3)–(3.4) with λγ > 0, yγ ∈ C∞[0, λγ ] and yγ ≥ 0.
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Proof. On one hand, the function fε given by (3.6) is an increasing function such that fε(0) = 0 and
fε(λ0) > 0 with λ0 = β−1

γ (0). On the other hand, Fε(βγ) with Fε given by (3.5) and βγ given by (3.7), is a
decreasing function for 0 ≤ x ≤ λ0. Notice that Fε(βγ(0)) = Fε(1) = εp + δ

p+1 and Fε(βγ(λ0)) = Fε(0) = 0.
Therefore we can conclude that there exists a unique 0 < λγ < λ0 that verifies (3.3).

Now, for this λγ > 0, it is easy to see that F is an increasing function, so that we can define F −1 :
[0, +∞) → [0, +∞). As Gγ given by (3.8) is a positive function, we have that there exists a unique solution
y ∈ C∞[0, λγ ] of Eq. (3.4) given by

yγ(η) = F −1 (Gγ(η)) , 0 < η < λγ . □ (3.12)

Remark 3.4. On one hand we have that F is an increasing function with F (0) = 0 and F (1) = 1 + δ
p+1 .

On the other hand, Gγ is a decreasing function with Gγ(0) = λγ exp(λ2
γ) erf(λγ) and Gγ(λγ) = 0. Then yγ

is a decreasing function and due to (3.3) we obtain

yγ(0) = F −1(Gγ(0)) = βγ(λγ) = 1 − 2λγ exp(λ2
γ)

γ Ste < 1.

Then it follows that 0 ≤ yγ(η) ≤ 1 for 0 < η < λγ .

Finally, from the above lemmas we are able to claim the following result:

Theorem 3.5. The Stefan problem governed by (1.1), (1.3)–(1.5) and (1.17) has a unique similarity type
solution given by (1.11)–(1.12) where (yγ , λγ) is the unique solution to the functional problem (3.3)–(3.4).

The solutions to problems with Neumann or Robin boundary condition at the fixed face can be obtained
as a direct consequence of Theorem 3.5 by fixing ε = 0 or ε = 1, respectively. Therefore we have the following
results:

Corollary 3.6 (Case ε = 0). The Stefan problem governed by (1.1), (1.3)–(1.5) and the Neumann condition
(1.18) has a unique similarity type solution given by (1.11)–(1.12) where yγ is the unique solution to Eq. (3.3)
and λγ is the unique solution of the equation:

2x exp
(
x2)

γSte = 1, x > 0.

Corollary 3.7 (Case ε = 1). The Stefan problem governed by (1.1), (1.3)–(1.5) and the Robin type condition
(1.19) has a unique similarity type solution given by (1.11)–(1.12) where yγ is the unique solution to Eq. (3.3)
and λγ is the unique solution of the equation

F (βγ(x)) = f(x), x > 0,

with F , f and βγ given by (2.4), (2.3) and (3.7).

Taking into account Lemmas 3.1 and 3.3 we compute the solution (yγ , λγ) to the ordinary differential
problem (1.13), (1.15), (1.16) and (3.1), using its functional formulation (3.3)–(3.4). Fig. 3 shows the function
yγ for a fixed δ = 5, γ = 50, ε = 1, Ste = 0.5, varying p = 1, 5, 10. As it was made for the problem with a
Dirichlet condition at the fixed face, the solution yγ is extended by zero for every η > λγ .

Applying Lemma 3.1, we can also plot the solution (Tγ , sγ) to the problem (1.1), (1.3)–(1.5) and (1.17).
In Fig. 4 we present a colourmap for the temperature Tγ = Tγ(x, t) extending it by zero for x > sγ(t).
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Fig. 3. Plot of function y for different values of p = 1, 5, 10, fixing δ = 5, γ = 50, ε = 1 and Ste = 0.5.

Fig. 4. Colourmap for the temperature T = T (x, t) function fixing δ = 1, γ = 50, ε = 1, p = 1, Ste = 0.5, Tf = 0, T0 = 10 and a = 1.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

4. Asymptotic behaviour

Now, we will show that if the coefficient γ, that characterizes the heat transfer at the fixed face, goes to
infinity then the solution to the problem with the Robin type condition (1.1), (1.3)–(1.5) and (1.19) converges
to the solution to the problem (1.1)–(1.5), with a Dirichlet condition at the fixed face x = 0.

In order to get the convergence it will be necessary to prove the following preliminary result:

Lemma 4.1. Let γ > 0, p ≥ 0 and δ > 0 be. If λγ is the unique solution to Eq. (3.3) and λ is the unique
solution to Eq. (2.1), then the sequence {λγ} is increasing and bounded. Moreover,

lim
γ→∞

λγ = λ.

Proof. Let γ1 < γ2 then F (βγ1) < F (βγ2) where F is given by (2.4) and βγ is defined by (3.7). Therefore
λγ1 < λγ2 . In addition as limγ→∞ F (βγ) = g we have λγ < λ, for all γ > 0. Finally, we obtain that
limγ→∞ λγ = λ. □

Lemma 4.2. Let γ > 0, p ≥ 0 and δ > 0 be. If (yγ , λγ) is the unique solution to the ordinary differential
problem (1.13), (1.15), (1.16), (3.1) and (y, λ) is the unique solution to the problem (1.13)–(1.16), then for
every η ∈ (0, λ) the following convergence holds

lim
γ→∞

yγ(η) = y(η). (4.1)
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Fig. 5. Plot of yγ for γ = 1, 25, 50, 100, and y functions fixing p = 1 and δ = 5.

Proof. According to Lemmas 2.2 and 3.3 we have that yγ(η) = F −1(Gγ(η)), with 0 < η < λγ and
y(η) = F −1(G(η)), with 0 < η < λ where the functions F , G and Gγ are given by (2.4) and (3.8).

Let η ∈ (0, λ). Then due to Lemma 4.2, there exists γ0 such that η < λγ , for every γ > γ0. As it can be
easily seen that Gγ(η) → G(η) when γ → ∞, it follows that

lim
γ→∞

yγ(η) = lim
γ→∞

F −1(Gγ(η)) = F −1
(

lim
γ→∞

Gγ(η)
)

= F −1(G(η)) = y(η). □

In order to illustrate the results obtained in Lemmas 4.1 and 4.2, in Fig. 5 we plot the (yγ , λγ) assuming
δ = 5, p = 1 and varying γ = 1, 25, 50, 100. We show that as γ becomes greater, the function yγ converges
pointwise to the solution y of the problem (1.13)–(1.16).

Theorem 4.3. The unique solution (Tγ , sγ) to the Stefan problem governed by (1.1), (1.3)–(1.5) and (1.19)
converges pointwise to the unique solution (T, s) to the Stefan problem (1.1)–(1.5) when γ → ∞.

Proof. The proof follows straightforward from Lemmas 4.1, 4.2 and formulas (1.11)–(1.12). □

5. Conclusions

One dimensional Stefan problems with temperature dependent thermal coefficients and a Dirichlet, a
Neumann or a Robin type condition at fixed face x = 0 for a semi-infinite material were considered. Existence
and uniqueness of solution was obtained in all cases. Moreover, it was proved that the solution of the problem
with the Robin type condition converges to the solution of the problem with the Dirichlet condition at the
fixed face. For a particular case, an explicit solution was also obtained. In addition, computational examples
were provided in order to show the previous theoretical results.
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